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NOMENCLATURE

length of afterbody

distance from leading edge of airfoil to initial value line

distance from tail of body to outflow boundary

distance from trailing edge of airfoil to tail of afterbody

number of grid points on stagnation line

number of stacked surfaces, radial direction

number of grid intervals on airfoil between leading edge and

point K

number of grid intervals on airfoil between point K and trailing

edge

number of grid intervals on afterbody between airfoil trailing

edge and end of

body

number of grid intervals between tail of body and outflow

boundary

grid clustering
grid clustering
grid clustering
grid clustering

grid clustering
edge

grid clustering
surface

grid clustering
direction

parameter
parameter
parameter
parameter

parameter

parameter

parametet

at

at

at

at

on

on

on

airfoil leading edge

point K on Segment 1

airfoil trailing edge
tail of body

stagnation line at airfoil leading

stagnation line at initial value

afterbody surtace in radial

- All other symbols are defined in the text.
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1. Introduction

Algebraic grid generation methods for three-dimensional (3-D) flow
problems have the advantage over their differential equation counterparts in
speed and ability to handle high aspect ratio cells without difficulty.
Where the algebraic methods are sometimes at a disadvantage is in treating
a wide variety of boundary shapes with a single code.

Since 1979 grids about wing-body configurations have been successfully
generated by several algebraic approaches. Eriksson [1] has generated a
single~block nonorthogonal 3-D grid using transfinite interpolation where
geometric data is specified only on the boundaries. Since no internal
surfaces are specified, grid quality is controlled, especially near a
surface, by incorporating out-of-surface parametric derivgtives. Smith [2]
uses the patched grid approach where the domain is divided into regions
with boundaries of a simpler character than the overall region. On the
interior of each six-sided sub-region transfinite interpolation is used to

generate the grid. His treatment extends only to the wing tips which limits

its usefulness. A third and quite different approach has been taken by
Caughey & Jameson [3]. Their technique generates a boundary-conformiag

coordinate system by a sequence of conformal and shearing transformations

;§‘q~f’

to vield a nearly orthogonal compu+ational domain. The grid is then

7

#Jenerated by simple linear interpolation. Shmilovich & Caughey [4] have

e’
A o
[

(el an it )
)

recently extended this technique to include a tail surface. The Caughey-

® .

9 Jameson procedure was developed for use with the 3-D transonic FLO codes.

L

} s . e . . . . . .

b ne of the major difficulties in algebraic grid generation is preventing

¢

SR ) . . - . . )

f: corter singularities on the boundaries from propagating into the yrid. Any
[ ]

interpolation method will propagate such singularities into the interior.
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~J

Differential equation grid generation schemes suffer no such problem because
of the diffusive action of the elliptic operator. Corner singularities

are always present in 3-D configurations at wing/fin trailing edges and

tail points on pointed bodies. A method for removing these singularities

in algebraic grid generation has been developed by Vinokur & Lombard [5] for
2-D geometries. Their method consists of patching a conformal hinge point
transformation in a small region near the corner to a grid in the remainder
of the domain generated by transfinite interpolation. They successfully
applied this method in generating a patched grid in a domain consisting of

a backward facing step at the end of a nozzle exhausting into a cylindrical
diffuser.

The proublem treated in this report is the generation of a surface fitted
grid in the stern region of an undersea vehicle, specifically an axisymmetric
pointed afterbody with four identical, symmetric, constant chord fins. 1In
many respects this problem is similar to the wing-fuselage problem. The
desired grid is to be used for either inviscid or viscid incompressible flow
calculations and hence must have proper clustering ability to resolve
regions of high {low gradients. An algebraic approach is used which is an
outgzrowth of earlier 3-D grid generation work on a fin-cylinder configuration
(6],

The algebraic method adopted here was oricinallyv inspired by the work of
Caughey 4 Jameson in unwrapping a c¢eometrv as wuch as possihie to produce a
narallelpiped with nearly straisht boundaries. This procedure is ot rhe
stiacking tyvpe where a 3-D grid is produced by a sequence ot 2-D grid
Jeneriation operations. In the present method stacked tubular surtaces ot

circular cross—section are first determined and then a C-type grid senerated

A

L e Mah
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on each surface. 1In the process of generating these surfaces as well as

in unwrapping the airfoil, corner singularities are removed by application
of a hinge point transformation to the entire boundary. The present
approach thus differs from that of Vinokur & Lombard in being global rather
than local in the use of the hinge point transformation. The result is a
smooth boundary with a slowly varying tangent. A grid which is orthogonal
at all boundaries is then generated on the interior by transfinite
interpolation. By using a sequence of one-dimensional stretching functions
in physical space, precise control is maintained over the clustering at

all boundaries.

N S PP T T T T R T S T .
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2. Analysis

2.1 Geometry of Computational Domain

We start by defining the geometry for which a surface-fitted grid is to
be generated.

(1) The afterbody is of circular cross-section and has a smooth

but otherwise arbitrary meridian profile that closes at the
tail point.

(2) Four identical fins of constant unit chord and infinite
span, consisting of symmetric airfoil sections, are
mounted 90 degrees apart with their chord planes passing
through the afterbody centerline. The trailing edges of
the fins are located upstream of the tail point a distance
drre.

(3) The computational domain consists of the region interior to
an outer cylinder of radius rpyp and exterior to the
afterbody, bounded upstream and downstream by planes normal
to the afterbody centerline (the initial value and outflow
planes).

A schematic of the geometry and computational domain is shown in Fig. 1
and a head-on view showing the coordinate system in the crossflow plane
appears in Fig. 2. Since the fins are identical and equally spaced there
are four planes of symmetry at 6 = 0, n/4, n/2 and 3n/4. Thus, only the

section - /4 < 8 < 0 is considered in generating a grid and in the flowfield

calculation.
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2.2 Grid Stacking Procedure

The simplest grid stacking scheme, such as that in Ref. 3, makes use of
a shearing transformation to distribute a sequence of two-dimensionally
produced grids in the third spatial direction. Unfortunately the shearing
transformation causes surface corner discontinuities to propagate into
the grid. 1In the present case of a pointed tail body, Fig. 3 illustrates
the situation that would exist in the meridian plane if a shearing
transformation were used. Along the vertical line through the tail point,
X = xr, lines of constant n have discontinuous slopes.

What is needed is a transformation to produce n = constant lines that
does not propagate corner discontinuities. The hinge point (power law)
conformal transformation has this desired property. At the tail point

(corner discontinuity) we write

where the real axis is aligned with the axis of symmetry, and

z =x+ iy , (2)

w=u+iv , (3)

n:—"—A— o (A)
T - GT

The tail angle éT is defined in the meridian plane schematic given in Fig. 4.
Equation (1) maps the sector 0 < 8 <n - éT above the real axis onto the
upper half plane. 1If Eq. (1) is applied to the entire bounding curve in

the meridian plane, A-B~C-D-E-A, the corner at the tail point B is
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eliminated in the w (hinge) plane. Then interpolating a grid in the hinge
plane, upon transformation, will produce a smooth grid (except at B) in the
physical plane which can be used for stacking.

Before proceeding further, we present the calculational steps in going
from the z plane to the w plane and vice-versa. We start by writing z and
w in polar form,

z = feie , W = pei¢ . (5)

Then substituting Eqs. (5) into Eq. (1) and equating real and imaginary parts

gives

an
p =T

. (6)
¢ =nb

Given (x,y), to compute (u,v) we first compute the magnitude r and angle ]

from
r = (x2 + y2)1/2 , i
| tan_l(-’%) +1 , x<0 - .
8 = < .% , x=0
tan” ' (&) , x>0

Next, p and ¢ are computed from Eq. () and finally u and v (transforming

from polar to cartesian form) from

O IUNE RN S
R ~

a et e Vata aNainantanagn
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[~
[}

p cos ¢ ,

<
0

p sin ¢ .

Conversely, if (u,v) are given, the magnitude p and angle ¢ are

from
/ )
1/2
p = (uz + vz) ’
( -lcv
tan (=) +7® , u<oO
u
r.
6= 1 3 , u=0
tan—l(l) u>o0
u i /

Then r and 8 are computed from the inverse of Eq. (6), viz.

R \
;= p1/\'1 ‘
a _ 1

0 = = ¢

Finally, x and y are related to r and 6 by

3

”

i
o
@>

CcoSs

(e} ]

sin

<
Il
o

The image of boundary A-B-C-D-E-A in the hinge plane is shown

schematically in Fig. 5 and has the appearance of a water spout. Segment BC

remains straight because the real axis in the z plane is coincident with
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BC. For convenience, the transformed boundary segments will be denoted bv
point-of-compass notation. Thus A-B-C is vs(u) and E-D is vN(u).

To accommodate the inflow and outflow boundaries (lines A-E and C-D in
Fig. 5) as well as the leading and trailing edges of the fin, vertical lines
must remain vertical in the physical plane. This requirement acts as a
constraint on the transformation from the hinge to the physical plane.

The simplest scheme for producing a grid in the hinge plane is a shearing

transformation on the image of x = constant lines. Thus the normalized

variable r is defined as

r = () . (12)

At this point the distribution of ;j is assumed known. Thus in the interior

v is given by
Vi g = Vgt rj(vN - vs] R (13)

where the index i is constant on x = constant lines.

Thus at point (1i,j) the values of x; and v, . are known. Then (y,u)i .
’

’ ]
are determined by iteratively solving Eq. (1) as follows: A first guess
for y is obtained by linear interpolation from
(1) _ = -

yi,j ysi + rj(yN ys)i * (14)

The cycle begins by computing u from
“n r oA
u=r cos (nf) |, (15)
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where r and § are given by Eqs. (7). Next, new values of p and ¢,
corresponding to the current estimate of u and the known v, are computed
from Eqs. (9). The p and ¢ are then used to update r and 8 using Eqs. (10),

and finally, x., and y are given by Eqs. (l11). Convergence is attained when

C

x-x.] <10% . (16)
c

Thus for each value of r = constant, a smooth curve ys(x) is determined

in the meridian plane using the above procedure. By revolving yS(x) about
the x-axis a tubular coordinate surface is obtained which is smooth and non-
L!! developable (except when it is a cylinder). On each of these surfaces a

. surface fitted grid is determined as though the surface were developable,

then projected back onto the surface. This means that given (x,8), r is

determined by interpolation of the tubular meridian-plane curve rS(x) = yS(x).
For the projection method to work properly, the foil subtended angle GF(x)
must be computed to account for the variable rs(x) from

-1.7F
=)
S

0., = sin

F (17)

where yF(x) is the airfoil semi-thickness distribution. Lagrange cubic
interpolation is used to determine r, given x, from the previously determined

values of rq.

Clustering of r = constant lines near the body surface is needed to

resolve the viscous layer whereas further awav, where flow gradients
R diminish, these lines can be further apart. A one-sided stretching function
is theretore appropriate to determine the grid line spacing in the meridian

- plane.
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Vinokur [7] has determined approximate criteria for the development of
one- and two-sided stretching functions of one variable which give a uniform
truncation error independent of the governing differential equation or
difference algorithm. He investigates several analytic functions but finds
that only tan z, where z is real or pure imaginary, satisfies all of his
criteria. These stretching functions were used in the predecessor grid
generation scheme [6] and are also used here.

Since r is already a normalized variable, its distribution is given by

tanh[% a6(g - 1)]

r=1+ , (18)
tanh %ﬁ

where £ is the normalized generating variable given by

and A¢ is the solution of

_ sinh A¢
SO iy s (19)

p

9

! and

[

P - SO = _C_l_% (0) ,

dr

;. N; = number of intervals in r = KMAX - | .
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2.3 Grid Generation on a Tubular Surface

Overall Approach

Grid generation in the x -~ 6 plane is accomplished in three stages. The
first stage involves a sequence of conformal transformations to unwrap the
airfoil, symmetry lines and initial and outflow lines into a quadrilateral
with a slowly varying height. The unwrapping transformations are the basis
for producing a C-grid about the airfoil. The second stage involves
translation and rotation of coordinates about the image of the airfoil
trailing edge, followed by a hinge point transformation to eliminate the
corner at the trailing edge. The third stage makes use of transfinite
interpolation to determine the grid in the hinge plane that is
srthogonal at all boundaries. Since the boundaries in the hinge plane are
smooth and have a slowly varying tangent, transfinite interpolation will
produce a smooth grid in which non-orthogonality in the interior is held to
a minimum. The grid in the physical plane is obtained by taking the inverse
of the sequence of transformations. Since the intermediate transformations
are conformal, the orthogonality at boundaries and grid smoothness will be
preserved in the physical plane. Spacing of grid lines is determined on

appropriate boundaries in the physical plane by use of stratching functions.

Sequence of Transformations

At this stage the coordinates of the fin (XF’GF) on a specified
r = constant tubular surface are assumed known. The first step, in
preparation for the unwrapping transformation, is to scale the (x,9)

coordinates according to
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X = 4(x - dS) + &n 2
: (20)
2 8 = 460
h where dS is the location of the singular point in the unwrapping trans-

formation and is just inside the leading edge of the airfoil. The stretching
f factor 4 is required by the unwrapping transformation so that the upper limit
b on 8 will be * 7 (the upper and lower symmetry planes are at 8 = * 7/4).

In Refs. 3 and 6, x is translated but not magnified whereas 8 is magnified

- as above. Unequal scaling is of course not conformal so that orthogonality
- of the grid cannot be maintained at the boundaries. The resulting grid in
RN the x — 0 plane will be highly flattened and thus highly nonorthogonal.

i On an r = constant surface the boundaries and coordinate system in the
X -8 plane are sketched in Fig. 6. Because of symmetry, only the region

- 1< 8 <0 needs to be considered. The airfoil can be unwrapped by applying

N the conformal transformation,

x + 16 = a1 - cosh(g + in)] . (21)

Equation (21) maps the region below the x-axis to positive E in the band
0 <€ n < n. We note that the sign of ® in Eq. (21) follows Caughey & Jameson
[3] so that a right-handed coordinate system results. In Ref. 6, the sign of

9 was negative which produced a left-handed system. Figure 7 presents a

® schematic of the boundaries in the £ - n plane. The initial value line (IVL)

A-B-C is seen to map into a near semi-circle.
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Following Ref. 6, the corners at points A and C can be eliminated by

applying the conformal transformation,

2
E0

g + in °?

E+in = £ + in + (22)

where EO is defined in Fig. 7. Equation (22) has the effect of nearly

straightening out the IVL. The geometry of the boundaries in the £ - 7
plane is shown in Fig. 8.

In Ref. 6 a shearing transformation is used to produce a grid in the

£ -n plane. For airfoils with non-zero trailing edge angles this procedure

produces discontinuous metric coefficients across the line £ = §F. To
eliminate the effect of the corner at the trailing edge (point F) a procedure
similar to the generation of the smooth curves in the meridian plane is used.

The £ - n coordinates are first translated and rotated about point F according

to

n>
|
~
'l
[}
wl
| —
0
]
n
>
Lc]
+
~~
=

> (23)

<>
|
|
V)
ull
l
Faul]
| —
]
s
=]
>
=3
+
~~
- |

where the positive X axis points toward point E, the airfoil leading edge,
and Ap 1is the trailing edge angle in the E-n plane. The translated and

rotated £ -~ n boundaries are sketched in Fig. 9.
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The final step in producing a smooth boundary is to apply a hinge point
transformation to (ﬁ,;) to eliminate the corner at point F. Equation (1)

applies provided z = X + i; and

n = ——0 , (24)

where

AN = A, - A . (25)

The resulting boundary in the hinge plane is sketched in Fig. 10. Once a
grid in the hinge plane is produced by transfinite interpolation, the
transformation sequence is reversed to obtain the grid in the x - 6 plane.
The FORTRAN coding is written in terms of real variables which involves
determining the real and imaginary parts of the conformal transformations

as well as their inverses. These relations are given in the appendix.

Corner Point Projection on Airfoil

v

Part of the present grid generation strategy is to force one of the
coordinate lines normal to the airfoil to pass through point C, the corner
point. This point on the airfoil is denoted by letter X -- see Fig. 10.
Such a line provides a natural division between those lines intersecting
the airfoil from the IVL, B-C, and the lower symmetry line, C-J.

An effective method of locating point K that prevents reflexes on the
connecting segment C-K is to construct a circular arc between C and K which
is normal to both boundaries. Under this assumption the relation between

the coordinates at C and K is found to be

£ = tanlg (oo + 0)] (26)

. P - L G
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where

tan ¢ = (27)

gu
dv °
Supplementing Eq. (26) by the equation for the airfoil image, vq(u), gives
two equations for the two unknowns uy and Ve

Equation (26), together with the airfoil image equation, can be solved

iteratively by the following formula, derivable from Newton's method:

u;n+1) = uén) + Auén)

where

-~
—
~
3
~

1
p(™ ug ~ug + (ve ~ v eanlz (0, + o))

1 + tan ¢K tan[%-(¢c + ¢K)]

The right-hand-side of Eq. (29) is evaluated from values at point X at the
(n) (n)
K

nth jteration level. In the determination of v and tan ¢K , Lagrange

cubic interpolation is used. Convergence of u, is quite rapid, requiring

K
usually about four or five iterations to reach IAUKl < 107%. once (u,v),

are known, {x,%)K are found by the inverse transformation of the mapping

sequence.

Stretchine Functions

In the x - § plane the two-sided stretching function of Vinokur is used
to zenerite the grid point distributions on the stagnation streamline HB-E
ind the airfoil-wake centerline E-K-F-[, For segment 8-FE a single stretchine

function is used whereas for seument F-K-F-I, a sequence of three stretchins

finctions is required.
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The two-sided stretching function for the normalized variable t is

given by

_ tanh(£44)
A sinh A¢ + (1 - A cosh A¢)tanh(£Ad) °

(30)

where & is the normalized generating variable of constant step size, A¢ is

the solution of the transcendental equation

_ sinh A¢
p - b o (31)
and
a=(s./s )2 (32)
0’°1
= 1/2
B = (5,5,) (33)

and SO and S1 are dimensionless slopes defined as

S. ===(0) ,

_ d¢g
S, =g (L

which control the clustering at t = 0 and t = 1.

The reason for using two-sided stretching functions on segments E-K, X-F
and F-1 is to provide clustering at all segment end points. It is needed at
point E because ot the rapid drop in pressure downstream of the stagnation
point, at point K to provide a more nearly uniform ygrid distribution on the
inflow line and at points F and I to resolve the flow at the airfoil trailing
edrre and tail of the bodv respectivelv. Since the arc length step size at

points X and F should be continuous, not all of the parameters (50'51) are
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independent. If (SO’SI) are specified on E-K and S1 is specified on K-F,
then S0 on these latter segments must be calculated to satisfy continuity of

step size at the segment junctions. The relation is

_ SkF NEK
' (SO)KF = (Sl) ST YT (34)

EK  Sgx  Ngp
where s denotes arc length of the segment and N the number of intervals on

the segment. A similar expression holds on segment F-I.

Transfinite Interpolation

Normalized pseudo-computational variables é and n are defined such that
the interior of the quadrilateral in Fig. 10 in the u - v plane transforms
to the interior of the unit square in the é -n plane., The transformation

from the computational domain to the hinge-plane domain is given in terms of

>
the position vector r:

u(g,ﬁ)
r(E,n) = , (35)
V(gaﬁ)

where 0 < £ <1,0¢<n< 1.
Specifying the distribution of the position vector t and its normal
derivatives on the four houndaries in the E - ﬁ plane is equivalent to

defining the grid on the boundaries in the hinge plane and ultimately,

the x - 0 plane.
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The transfinite interpolation method used here is the extension of
Eriksson [1] as specialized by Vinokur and Lombard [5]. The relation for

>
r, using point-of-compass notation for the boundaries, is 1

NE SE NE
+ ()T, (A) - %, E(n) -, F(R) -t 6(n) -z, u(n]
Ew ESW ENW Eﬂsw Ean
+u(8)[r, () -, E(A) -T, F(n) -t 6(n) -t H(n)]
e tse ENE Engg Ee
(36)
where E, F, G and H are cubic blending functions given by
2
F(u) = u™ (3 - 2u)
G(u) = u(l - u)2
v, (37)
H(w) = u(u - 1)
E(u) = 1 = F(u)

...................
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Equation (36) thus provides a smooth blending on the interior of the given
distribution of grid points and normal derivatives on the boundaries. A
typical grid in the hinge plane obtained by transfinite interpolation is
shown in Fig. 1ll.

The evaluation of the various derivatives on the boundaries in Eq. (36)
follows the prescription given by Vinokur & Lombard and is presented in

detail in Appendix II.

Addon Grid

The foregoing procedure produces a C-grid in the x - 6 plane in the
region upstream of the tail line I-J. Because é = constant lines in the
upstream grid are normal to I-J (and I-J is straight as well as normal to the
wake centerline), a downstream grid can easily be created which has continuity
through first derivatives across I-J. The addon grid which has these
characteristics is a Cartesian grid with the same 6 distribution at I-J as
the upstream grid. Distributing grid points on the x-direction downstream

of I-J is accomplished by a one-sided Vinokur stretching function with the

parameter SO determined by requiring continuity of Ax on either side of I-J.

2.4 Computational Grid

If indices i, j and k denote the coordinates é, n and ;, then the

computational coordinates x, v and z may be conveniently defined as

X=i-1 , 1<1icx<i )
max

Y=j-1 , l&j<yj . (38)

Z=k-1 , l<kc<k
max




The advantage of this system is that

directions is unity which simplifies
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the computational step size in the three

the metric coefficient calculations.
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3. Results and Discussion

The afterbody-fin grid generation code is called TAILGRID and consists of
about 1600 FORTRAN statements. It is written in double precision arithmetric
and computes in terms of real variables only. To date all grid generation
has been done on a VAX 11/782 computer with CPU per grid point found to be
about 7 x 10_3 sec. Thus computing a surface containing 1500 points requires
approximately 10 sec.

The airfoil family chosen for testing the grid generation procedure was

the NACA symmetric four digit series. The equation for this profile is

yp = = 51(0.2969 /X - 0.1281x - 0.3516x% + 0.2843x> - 0.1015x") ,  (39)

where T is the maximum thickness expressed as a fraction of the chord. 1In

the original equation for Yp» see Eq. (6.2) of Ref. 8, the coefficient of x
is given as 0.12600 which causes the airfoil to have a finite trailing edge
thickness (yTE = 0.0021). Since the grid generation procedure requires zero
trailing edge thickness, the coefficient of x was modified as shown in
Eq. (39). Interpolation is used liberally on the airfoil in the grid
generation process; thus an accurate definition of Yp versus x is a
necessity. Usually 100 points on the airfoil are computed for this purpose
with clustering at the leading edge.

A number of 2-D test cases in the x - 6 plane were run to determine
the etffect of certain input parameters on grid quality. These cases all
consisted of an NACA 0012 airfoil at a cylindrical radius of 0.5. The
common parameters for the five cases are given in Table 1 while the

parameters that vary from case to case are presented in Table 2.
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‘L-
N1 N2 JMAX DOB SXO0 SX2 SX3 SY1
10 20 31 1.0 5.0 2.0 l.1 1.0

Table 1., Common Parameters in 2-D Test Cases.

Case DIVL SX1 SYO
1 0.5 1.0 2.0
2 0.5 3.0 2.0
3 0.5 3.0 50.0
4 1.0 3.0 50.0
5 1.5 3.0 50.0

Table 2. Variable Parameters in 2-D Test Cases.

In all of the above cases, the point distributions on inflow-lower symmetry
line and outflow boundaries are determined as described in the previous section.
In this 2-D example only the grid point distribution downstream of the trailing

edge is given by a geometric progression.

Case | and 2, shown in Figs. 12 and 13, are the same except that clustering
is used about point K in case 2 and none is used in case l. The orthogonality

constraint is seen to produce considerable spreading of § = constant lines

{
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near the corner (point C). Without clustering a poor boundary point
distribution on the IVL is obtained whereas with clustering the distribution
close to point C is improved.

Case 3, presented in Fig. 14, is similar to case 2 except that the
clustering parameter on the stagnation line at the airfoil leading edge is
25 times larger. The result is a much more dense grid near the airfoil
surface which would be useful for calculation of viscous flow at high
Reynolds number. 1In both cases the number of points on the stagr. ion line
is the same -- 31.

Cases 4 and 5 (see Figs. 15 and 16) show what happens to the grid when
d is increased, all other parameters being the same as in case 3.

IVL

Point K is seen to migrate toward the airfoil leading edge as dIVL increases

which results in a squeezing of grid lines between the leading edge and

point K. 1In terms of grid quality the optimum value of d appears to lie

IVL

between 0.5 and 1.0 so that line C-K remains nearly straight. One way of
moving the IVL further upstream without sacrificing grid quality would be to
add a cartesian grid upstream of the flattened C-grid with the same 6-spacing

as on line B-C (the IVL for the C-grid).

For a 3-D test problem the afterbody meridian profile was represented

R " OOnOOn0

by the following analytic function:

L]

ry(u) = r, F(u) - d

| bogd tan GTG(H) s (40)
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H=- X
’
dbod
dbod = afterbody length ’
r, = initial afterbody radius |,

and F and G are the cubic blending functions defined by Eq. (37). The

particular values chosen for the afterbody parameters are

rbl = 0.75 , dbod = 2.5 , tan OT = 0.50 ,

which produce a fairly full profile with a tail half angle of 26.6 degrees.

Other parameters in the test problem are given in Table 3.

N1 N2 N3 N4 JMAX KMAX DIVL DTL DOB
10 20 5 10 31 3 0.75 0.5 1.0.
RTIP TAU SXO0 SX1 SX2 SX3 SYO SY1 ._;;0
1.0 0.2 5.0 3.0 2.0 2.0 2.0 1.0 2.0

Table 3. Parameters in 3-D Test Problem.

Only one intermediate surface was generated in the test problem to serve as an

illustration of the general features of these surfaces.
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The meridian plane view of the test problem geometry, computational domain
and intermediate surface is shown in Fig. 17. Two views of each r = constant
surface are presented, the first from below and in front and the second from
the side. These views are shown in Figs. 18 through 23. A composite side
view showing the position of each surface relative to the other is presented
in Fig. 24.

In a grid stacking procedure each grid on a surface is generated somewhat
independently of the other. The dependence is indirect through the geometry
and not direct as in the case of partial differential equation grid generation
schemes or fully 3-D algebraic schemes. Thus for 3-D grids generated by
stacking one of the primary concerns is with smoothness in the stacking
direction. 1In the present method, the only reason that the grid changes in
the x - 6 plane from surface to surface is that the airfoil image is
changing. As T increases, the airfoil image, according to Eq. (17), is
shrinking in terms of maximum thickness approximately as l/rs. Although the
total arc length of the airfoil image is also shrinking slightly as T
increases, the clustering parameters are fixed and hence the airfoil point
distribution on each surface is always in the same proportion. As the
airfoil image grows thinner, point K slowly moves toward the leading edge.
The trace of point K in the meridian plane is shown in Fig. 17. On the other
hand, the distribution of points on the stagnation line remains the same
independent of r. Of course close to the surface of the afterbody in the
vicinity of the tail the grid shrinks rapidly to reflect the pointed nature

of the tail and the axis singularity. This feature would exist whether or
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not stacking were used. Thus because the airfoil image is varying slowly
as r increases and th. oints on the image remain in the same proportion of
arc length, the present method can be expected to produce a grid of high
quality in the stacking direction.

One aspect of the current strategy of point placement on boundaries is not
entirely satisfactory. Although the circular arc method of point placement
in the hinge plane works well on the lower symmetry line, it leaves something
to be desired on the IVL. Coupled with the singularity at the corner
(point C) and the orthogonality requirement at boundaries, clustering at
point K was found to be necessary to achieve a reasonable point spacing
near point C on the IVL. This clustering would probably not be necessary
if a different strategy were used to locate the points on the IVL. One
possibility would be to space them in the x - 6 plane in the same proportion
of arc length as along the airfoil between the leading edge and point K.

Downstream of point K the strategy would remain as before.
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Conformal Mapping Relations

from x - 8 to E-n plane.

1/2

1/2

e~ el i i = i dape e e dhae St e S s Jai St Mt S \'Y‘V“'J‘n'“"-"h‘-'-'j

. . —1,1 2 -2
£ = sinh {5 [8+ (B +43°) I} R (AL.1)
- cosl(o P
n = cos | ~osh E) s (AT.2)
. where
5 B=p +q -1 , (AL.3)
- X -
p==¢e cos 6 -1 . (AL.4)
- = -
q=¢e sin 8 . (AL.5)
and
'E' = E(l + l-l) , (AI.6)
7=l -¥) , (AL.7)
where
2
- &9
== 5 . (AL.8)
£" +n
4
.
o
7
: AT PR
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(2) Transformation from £ - n to x - 6 plane.

- 1/2
FE+ [z 0+ D]

(]
0

_ 1/2
n =-% n o+ [% - p]

where
2 2.1/2
w=(p" + 4q°)
1 =2 -2 2
P=Z(€ - )-EO
q = %—Ei
and

X = 2n(cosh & - cos n)
- 5= -1¢/1 - cosh & cos n
N ® cos ( cosh £ = cos n )
}j: In the preceding relations EO is computed from
..
- _ il r_4 exp(-a)
L &y = sinh [1 - exp(—a)]
P}? where
;!‘
= a=4(dg +dpy ) -
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(A1.9)

(AI.10)

(AI.11)
(AI.12)

(AI.13)

(AI.14)

(AI.15)

(AL.16)

(AI.17)
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In the determination of ds, the same procedure is followed here as in

L . v e e
oL \‘ R S
P A ]

Ref. 6 where near the airfoil leading edge in the x — 8 plane the most nearly
orthogonal grid is sought. Such a system is obtained when the leading edge

maps into an n = constant line. The resulting expression for dS is found to

.- be

- 1 + 4p

N _ 1 0

o dg =7 (1= Zp0) , (AI.18)
R

where pO is the radius of curvature of the airfoil leading edge in the x - 6
plane. Equation (AI.18) differs from its counterpart in Ref. 6, Eq. (100),

Q because a uniform stretching of x and 8 is used here.
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Appendix II. Evaluation of Boundary Derivatives for Transfinite Interpolation

Normalized coordinates é and n are determined in the hinge plane in
terms of the normalized arc length along the south and east boundaries
(lines E-K-F-I and B-E in Fig. 10). 1If s and s, denote running arc length

along the south and east boundaries, then

Ei = - L (AIL.1)
E-1
(s,)

TA‘i ) -1, (AIT.2)
B-E '

where the running arc lengths are determined using the chord approximation.

> > A -
If t. and t, are unit tangent vectors along the £ and n coordinate curves,

1 2
then
. asl .
I‘g = — tl , (A11.3)
9
and
. 332 .
=Tty (AII.4)
an

Under the assumption that extended orthogonality holds at the corners the

cross-derivative is given by

(AIL.S)
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where C1 and 02 are the curvatures of the E and n coordinate curves

respectively.
The south-north and west-east boundaries are assumed always to be oriented
as shown in Fig. 10, Thus on the south boundary we take vg = vS(u) from

which the unit tangent vector follows as

+ > + > > ATL.6
tl - tlueu tlvev ? (ALL.6)
where
.
' £, = 1 (AIL.7)
lu 2 1/2 ’ ¢
e (1 + v! )
$_
.
o \ ]
- Vg
tlv = > 172 . (AII.8)
(1 +v2)

> >
and e, and e, are unit vectors in the u and v directions respectively. Then

the unit normal vector to the south boundary may be written as

-E = =t e + t e . (AII.g)

5 _ S

> C1 = > 77 . (AI1.10)
. +

n’ On the east boundary we take uE = UE(V) and hence the unit tangent vector

r:. is

-

p” o

>

-

b,

b

b~

-

RIS Y

| e aiaiond
TR .
»
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)
]
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where

Then the unit normal vector is

and

The

> >
e

2u v

the curvature C2 is

e
u
E

2 5372
(1 + %)

On the south boundary, from Eq. (AII.l)
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(AII.11)

(A11.12)

(AII.13)

(AII.1l4)

(AII.15)

(AT11.16)

derivative Ds,/aﬁ on the south boundarv is known only at the end points

and hence must be determined between points E and I by interpolation.

.'; Following Ref. 5, we use a cubic blending function approximation, viz.
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’ s, 352 . 382 . 8252 R 3252 R
(=2) - (D) E(B) + (=B R(B) + (—2) o(8) + (—=2) u(B) . (ALL.aD)
o g 3n gy CLIEY IE3N gy 3E3N g

be
1 ds ds, 3s
i 'ir ( AZ) = ,1 62 ¢, - (AII.18)
;‘ 9  9n 9 9n
h.

On the east boundary, from Eq. (AII.2)

852
(_:_) = SB—E . (AIT.19)
on g

and analogous to Eq. (AIL.17), the cubic blending function formula for

asl/aé is

le 351 . asl R azs1 . 3251 .

(—) = (=) E(®) + (=) (") + (—=) o(n) + (—=) u(n) . (a11.20)
€ g € gE 3 NE INdE gp INdE Ng

where from extended orthogonality

9s ds, 9s
l} = — 1 _2 c

R
~ \ ~
on 9d& 3& an

(AIT.21)

-~

To maintain a reasonable spacing of £ = constant grid lines in the

physical plane, especially near the airfoil surface, the normal spacing

in the x - 9 plane on the stagnation and outrlow lines (east and west

(nf)

houndaries in the hinge plane) is taken to be the same. As a result i
W

does not obey a relation similar to tEq. (AIT.2) and hence aqq/aﬁ must be

. N B B T S Sl SN ST .i
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determined numerically point-by-point. As for asl/aé, an interpolation
relation similar to Eq. (AIL.20) is used with appropriate changes in
notation.

On the north boundary the points are positioned in the hinge plane by
using a circular arc approximation similar to that used in locating point K.

The iteration formula for u,, similar to Eqs. (28) and (29) is

N
1
(UN)§n+ ) . (uN)in) + [AuN)in) , (AIL.22)
where
ug = ug + (vg - v Jean[k (o + 6)] |
(bg) = S N s N : 2 \'s " "N . (AIL.23)
1 1+ tan ¢ tan[5 (65 + ¢)]

The derivative asl/aé must be determined numerically at each point and
Bszlaﬁ is computed from an interpolation formula analogous to Eq. (AII.l7).
In the determination of the various interpolated values of u and v and
their derivatives required in the foregoing equations, Lagrange cubic
interpolation is used. The derivative expressions are determined by

differentiation of the Lagrange polynomials.
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